The effect of photonic bandgap materials on the Shockley-Queisser limit
نویسنده
چکیده
The limiting efficiency of photovoltaic energy conversion was determined by Shockley and Queisser using the theory of detailed balance, which described the balance between absorption and emission of photons. However, when a material is placed on top of a solar cell that modifies the transmission of photons (e.g., a photonic crystal), both the absorption and emission of photons are modified. Here, we show how the addition of a photonic structure can lead to an effective modification of the energy bandgap of the material and can subsequently change its maximum theoretical efficiency. We consider the effect of non-ideal photonic structures and the effect of non-radiative recombination within the cell and find that, with realistic materials, efficiency gains of several percent can be achieved with the addition of photonic structures. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4742983]
منابع مشابه
Efficiency above the Shockley-Queisser limit by using nanophotonic effects to create multiple effective bandgaps with a single semiconductor.
We present a pure photonic approach to overcome the Shockley-Queisser limit. A single material can show different effective bandgap, set by its absorption spectrum, which depends on its photonic structure. In a tandem cell configuration constructed from a single material, one can achieve two different effective bandgaps, thereby exceeding the Shockley-Queisser limit.
متن کاملLimit of efficiency for photon-enhanced thermionic emission vs. photovoltaic and thermal conversion
Conversion of sunlight by photon-enhanced thermionic emission (PETE) combines a photonic process similar to photovoltaic cells, and a thermal process similar to conventional thermionic converters. As a result, the upper limit on the conversion efficiency of PETE devices is not the same as the Shockley– Queisser (SQ) limit that corresponds to the bandgap of the absorbing material, nor to the Car...
متن کاملLimiting efficiencies for intermediate band solar cells with partial absorptivity: the case for a quantum ratchet
The intermediate band solar cell (IBSC) concept aims to improve upon the Shockley-Queisser limit for single bandgap solar cells by also making use of below bandgap photons through sequential absorption processes via an intermediate band (IB). Current proposals for IBSCs suffer from low absorptivity values for transitions into and out of the IB. We therefore devise and evaluate a general, implem...
متن کاملSubmission Format for IMS2004 (Title in 18-point Times font)
The Shockley-Queisser (S-Q) theory defines the thermodynamic upper limits for Jsc, Voc, FF, and efficiency of a solar cell. The classical calculation assumes an abrupt onset of absorption at the band-edge, perfect absorption for all energies above the bandgap, and absence of non-radiative recombination. These assumptions are never satisfied for any practical solar cell. In this paper, we explai...
متن کاملPower conversion efficiency exceeding the Shockley-Queisser limit in a ferroelectric insulator
Ferroelectric absorbers, which promote carrier separation and exhibit above-gap photovoltages, are attractive candidates for constructing efficient solar cells. Using the ferroelectric insulator BaTiO3 we show how photogeneration and the collection of hot, non-equilibrium electrons through the bulk photovoltaic effect (BPVE) yields a greater-than-unity quantum efficiency. Despite absorbing less...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012